skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, Graham J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Societal Impact StatementCrop genetic resources, particularly seeds held in ex situ germplasm collections, have enormous value in breeding climate‐resilient crops. Much of this value accrues from information associated with germplasm accessions. Here, we argue that flavor, culinary attributes, and other traditional ecological knowledge (TEK) are important characteristics alongside genomic information and high‐throughput phenotypes. We explore both the value of this information and the potential risks of exploitation of sensitive TEK. We also examine the potential of in situ conservation to preserve not just the genetic diversity of crops, but the TEK associated with them. SummaryCrop genetic diversity is essential for meeting the challenges posed to agriculture by a rapidly changing climate. Harnessing that diversity requires well‐organized information, often held by ex situ genebanks and associated databases. However, the characterization of crop germplasm often lacks information on its cultural and culinary background, specifically its flavor or taste. For most crops, characterization data is lacking, but when it is present it is more likely to include whole genome information, high‐throughput estimation of growth characteristics, and chemical profiles indicating flavor rather than details on the dishes for which particular varieties are favored or how smallholder farms have grown particular accessions. This loss of cultural and culinary information, and the broader loss of traditional ecological knowledge (TEK), is more than just missing information. It is a loss of legacy when landraces are no longer grown by the communities that developed them. In the face of climate change, TEK has great value for developing more sustainable or resilient practices. And with increasingly global palettes, we must balance consumers enjoying dishes from new crops with the appropriation of culturally meaningful foods. Our aim here is to explore this flavor gap, to understand the risks in sharing data and the benefits of honoring long‐established uses. We emphasize the importance of ensuring the fair representation of diverse peoples in genebanks and consider both ex situ and in situ conservation approaches. Finally, we analyze the impact of modern breeding choices on culinary diversity, emphasizing the preservation of ancestral knowledge and flavor profiles. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026
  2. Informed policy and decision-making for food systems, nutritional security, and global health would benefit from standardization and comparison of food composition data, spanning production to consumption. To address this challenge, we present a formal controlled vocabulary of terms, definitions, and relationships within the Compositional Dietary Nutrition Ontology (CDNO, www.cdno.info ) that enables description of nutritional attributes for material entities contributing to the human diet. We demonstrate how ongoing community development of CDNO classes can harmonize trans-disciplinary approaches for describing nutritional components from food production to diet. 
    more » « less
  3. Abstract Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a “model clade”. These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a “model clade” and make suggestions for building global networks to support future studies in the model order Brassicales. 
    more » « less
  4. Abstract Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade. 
    more » « less